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The theory of MRC Technical Summary Report 2067 is applied in a

simplified form to a Relativistic One-Particle Universe, and boundary and

symmetry conditions are imposed. The existence, for the particle, of a series

of resonance states and a series of gauge states is derived. For the proton

and the electron, a selection of such states account for the elementary

particles observed to date.
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11. Introduction. It is often stressed that the Calculus of Variations, or its

modern form, Optimal Control, originated concepts of importance in other fields. This was

illustrated, in the case of the concept of generalized curve, in the MRC report 18). As

regards Part I of that report, we take this opportunity of drawing attention to some recent

researches, in fields not always considered close to variational theory. In differential

and partial differential equations (where Cesari pioneered methods from Optimal Control),

problems of electro-magnetism and the like have now led Tartar and Murat to "compensated

compactness", a topic intimately related to generalized curves. Probability distributions,

of the same general nature as in generalized curves, are also beginning to be considered,

for instance by Sinai, in dynamical systems. In engineering, lines of stress, that

approximate generalized curves, have been found by Sneddon, and an appropriate theory of

the limiting behavior of porous or re-inforced material has been developed by the school of

Lions. However the present note is intended to continue Part II of the report, and to

provide adjustments and developments for what was then, to an even larger extent than now,

a preview. The full details will be given in a book by Nowosad, nearing completion.

'This work was carried out at IMPA while the first author was visiting there
in November 1981.

**Eeritus research professor at the University of Wisconsin-Madison and
emeritus professor at the Mathematics Research Center, Madison, Wisconsin.

IMPA, Instituto de Matematica Pura e Aplicada, Rio de Janeiro.

Sponsored by the United States Army under ontract No. DAAGM9-80-C-0041.



J2. The, P,t metric 4nd its transformation to a Poincarg halt-plane. ce reed to

tit in material about wave-functions and eigenfunctions: it is available trom a few pages

of Titchmarsh t7, p. 93 sequ). Also as regards symmetries, we need material given in a

different metric in the book of Gelfand and others (3, p. 33 sequ]. We therefore require a

C x C * C x C transformation of the metric

d2 - x2 2 2
do 2 1 into -1d" d2 = dx + dy

cosh
2 
Ux y2

Let B be a complex constant (eventually chosen to be -i), and let xIx 4,x,y be complex

variables. An appropriate transformation, ignoring in (1*) a constant factor -1/U
2  

of no

importance, is

1x1 +4 
)

U(-x I+x4

(T) x + iy 'B-i e , x - iy= + ie 4

For reference to Gelfand, we shall use the metric (1) in the real half-plane y ) 0, the

so-called Poincar4 half-plane. This we defer to the next section, hut we shall here quote

some of the results affecting the metric (1) for real x1 ,x4 - These two real variables we

shall often write P,t: the metric (1) is then viewed as an abstract form of one with more

familiar coordinates, and for this, p becomes the function

(2) 0(r) - j log cothI uIr - r0 1)

of a radius r, so that in particular r - corresponds to P = 0. Eventually our

results must be translated into those in familiar coordinates.

In the metric (1) we require eigenfunctions U - V(p)T(t) for the associated

Laplacian A = cosh
2
Up(3

2
/30

2 
- a

2
/at

2
). They satisfy A1U - kU, so that we can write

(3) T(t) - Ae
t  

+ Be-  , Y. + (A - X )y 04cosh 2 
-

2

if (to agree with Titchmarsh) we set X - 2w9, Y(X) = V(p), -p/(40
2 ) = A, k/U

2 
= (1 - C).

itere A 0 0, as we must exclude, from (3), solutions which aie or blow up as functions

ot t.
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For k = 0, the harmonic case in the metric, we have no need of Titchmarsh and we

retain the notation U = VT. Then in (3) T is written as usual as the combination of
t iwt

e *and V(p) is sin(wp + y ). However V = 0 at r (i.e. at p - 0) and

Vr = 0 at r = 0 (i.e. Vp = 0 at P = PO = P(r0 )) are here boundary conditions, we

can thus set yw = 0, and the conditions at r = 0, together with the symmetry condition

of the next section, lead to

(4) W - (n + I)W/pO ,  W/P = s + 1, where n,s = 0,1,2,...

For k * 0, Titchmarsh gives the solutions Y. Those for A 4 0 hold only for particular

a, and if we exclude A < o, they are Legendre polynomials in tanh - X and a has to

be an integer > 1. For A > 0 we get on a a restriction from a boundary condition on

V, imposed at X = ± . e thus find

(5) either A = 0, 9 = N + 1, or A > 0, a = iYN

where y = VN(N + 1) - i74, N = 1,2,.... For A > 0 the boundary condition is referred

to as a tunnel condition (Landau (61, p. 102). Near X = ±., we have to a high

approximation Y" + Ay = 0, so that Y is a virtual combination of exp(t ixIA). The

condition requires that it Y at +- is exp(+ KV'&), then the term exp(- iX') must

drop out also at --. Landau gives as the coefficient that must vanish
1 14 ( - a

F(iA)A(I - iA)/{F(-a)r(i + a)) where a = v4a(l - a) + 1 -
22

As this only vanishes when r(-a) , we see that a is a positive integer N, and this

gives a - I ±iN

On the Vontinuous spectrum A > 0, Titchmarsh gives an integral representation of the

Fourier type for square integrable functions of X. It involves two densities

V(A),C'(A) where 4' increases, while ' has a maximum depending on the parameter

a, and so in our case on N. The approximate values of /A turn out to be

3 1 1 NN )

(b) for W = 1, -L + -L YN for N > 2 where YN .N(N+ 1)- 1/4

These high density positions are important in that their neighborhood contributes most

niqhly to the Fourier type integral.

-3-



13. Symmetries. In the Poincar6 half-plane of z = x + iy, y V 0, the symmetries we

need correspond to the subgroup K of rotations

b _ Jco•S -sine

d sine cote]

in the unimodular group G of 2 x 2 matrices. The rest of G is of no particular

interest. K matterst anything in the metric (1) whose image in (1*) lacks the proper

invariance relative to K will be unstable. Our symmetry condition is so formulated

because Gelfand is available. Gelfand defines, for appropriate functions, transformations

T9 a T•eg, where g Q G and where a is a parameter. There is a principal series.

with a a iT, T real, a supplementary series with -1 < a < 1, and there are two

analytic series, corresponding to positive or negative integers a. The first two series

can be defined on the C' bounded functions O(z) subject to

S(1 - 2)

where A* is the Laplacian in (1*), i.e. the usual one times y2. These 0 are

sigenfunctions of A* invariant under the rotations in K. They are also images of

eigenfunctions in (1), and the boundedness of such an image reduces, in view of the

explicit hypargeometric form given by Titchmarsh, to the condition A 0 0 already

imposed. Taking account of a change of scale by p, our symmetry condition is thus

satisfied if k/P2 -0 - s2), i.e. if this last quantity is G(1 - 0), i.e. if

Evidently this is satisfied, with s = iT (principal series), for A > 0, on account of

(5). Our tunnel condition thus already implies the desirable symmetry for this case.

we next come to the first of the analytic series of To,g. Now the transformations

are on functions v analytic for y > 0 and such that both o and the function

O(W) = Us(z1)/s•  are C in y b 0. The common exgenfunctions of the matrices of K

under Ts,g, where now

T OW . &( +-*)(bs + d)"• -1

e!g (4 + d ,b
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are the functions

-P (z) = (z - i)(z + i) - s ,  
= 0,1,2.

The symmetry for k 0 amounts to U = VT having as its (1*) image one of these St" We

clearly must then have it = 0, 8 = -i. The condition moreover involves z and so the

first equation (T), not i, but to make real xt,x 4 
+ 

real x,y we should write

±iXI±ix 4 in place of x1,X 4. We find that (z + i)-s-
1 

becomes a constant multiple of

exp(±iw(x I ± x4 )) only if w = (s + 1)p.

In the case A = 0, which still remains, the form of Y as a Legendre polynomial

in tanh X is enough to convince us of its invariance under rotations of the appropriate

type. However the passage to the metric (1*) will suggest an important physical idea. We

now need the second analytic series, which Gelfand gives in his other book [4, p. 468

sequ]. We write F_, for the space of analytic functions 0 of the first series

s = 0,1,2,.... we define further the space Vs of analytic functions P on y > 0,

such that 0, are C7 on y ) 0, where ¢(z) * zS-(-z-1). We define our new

transformations Ts,g on V. by setting

az + c (aS-1

T,,g~p(z) = (S a)Cbz + d)'- when g = (a ) G

Lvidently these have in Ds an invariant subspace Es consisting of the polynomials of

degree 4 s - I. Moreover, it turns out that we can map Ds/Es on F-s by

differentiating the s(z) s times, and so wiping out the above polynomials. Conversely,

from F 5s we get back to Vs by s integrations, which then restore the arbitrary

additive term from Es. Clearly it is in E s that we must look for the images of our

L gendre polynomials Y in tanh I X, under a map suitably related to (T). This suggests

that these polynomials Y play like their images in x,y, the same part of arbitrary

additive terms, tacked on to an s-th "inteqral", which in the invariant harmonic case

corresponds to the s-th integral ot (z + i)
-s -

1, i.e. apart from a constant factor to

the lowest of the latter, namely (z + i)
-
1
. 

We shall loosely speak of our Y, for

A = 0, as giving to a harmonic U a "twist" of order s, where U is itself associated

L



with the value a 0 UIn (4). The degree of the polynomial corresponds to N n the

tirat part of (5). so that we must set N (a -I



§4. Adjustments to the theory. The things physicists speak of as quanta associated

with elementary particles, arises from jumps of the energy, or Dirichlet integral, in the

relevant metric, which we now take to be that of a one-particle universe, namely

2 2 2 2 2
(7) as = (sech 2p)(dp - dt ) + dy + dz

By limiting ourselves to this, we eliminate interaction, and so questions about quarks or

the Pauli exclusion. But we may also be excluding the instabilities that might eliminate

from our theoretical states some so far not observed. Here as before, p is related by

(2) to a radius r, while t,y,z are usual coordinates.

We recall from the report [8], that when exponentials are used to ensure a

multiplicative superposition of states, the energy integrand may become f- A7 f, where

A is the Laplacian in the metric (7). Jumps then come from zeros of particular f in7

an algebra M of wave-functions. One such algebra suffices for a photon, but we need two

related M,M' for our particle, which then describes a generalized curve. The apparent

velocity is v = Plvl + P2v2 where p1 ,p2 are probabilities and P1 + P2 = 1; p1 ,P2 are

associated also witn an f Q M and an ' Q M', where the zeros of f,f' give the

particle's position. In the report, v,,v 2 were velocities of emitted and absorbed

photons. We took for granted that a photon has a position, and for better localization the

waves f had a real part f1 and a complex part f2 + if3. M and M' were generated by

the same complex parts, but different real parts. Here we do not localize photons: we

allow real or complex f as the occasion arises. Nevertheless in effect a similar

separation is obtained by the classical process of separationof variables in the solutions

to Laplace's equation in the metric (7).

These solutions, the harmonic functions in the metric, are the main intrinsic objects

that this theory is built on. From them, other objects are derived, just as from straight

lines in the plane we derive curves as envelopes, and generalized curves as limiting

zigzags.

-7-



t5. The radiation field of an electron or a proton. Lature has few principles, but

an extraordinary variety of structures. The few preceding pages are the key to results of

great diversity, and whose agreement with observation can hardly be fortuitous. But some

cherished notions may have to be abandoned - particularly those Fourier tells us Nature has

no room tor: "lea notions confuses".

The Laplacian for the metric (7) is the sum of the Laplacian A1 for the metric 1 in

0,t, and the ordinary Laplacian A in y,z. The algebras M,M' we naturally come to,

will be derived from the harmonic functions for A + A, and will be qenerated by products

U(pt)W(y,z). The Most basic turn out to be those for which U,W are themselves harmonic

in their metrics. To retain some analogy with the separation of an f into f1 and

f2 + if3 in the preceding section, it is natural to identify U with f, and W with

f2 + if3. The two algebras are then generated by (real) functions of p ± t, multiplied

by (complex) functions of y + iz, and the latter - if we subject them to the

monochromatic conditions of the previous report - are analytic, or else anti-analytic (i.e.

with the sign of i reversed). We leave out of our discussion the anti-analytic case, it

applies to anti-particles. The pair of real functions of p ± t now balances in a sense

the real and imaginary parts of the complex function of y + iz. (A more complete

interpretation, in terms of Penrose twistors, will be given in Nowosad's book.)

For the desirable zeros of suitable members of M,M', we do not have to look far. As

a standing singularity, there will be the line y - z - 0 in R 3 , on which y + iz = 0.

It is of the same nature as the dislocation lines in crystals, found by Hirschfelder, Nye

and Berry, and described by Dirac in 1948. (See for instance Jackson (5), p. 258 sequ.)

But the really important singularity is the wave-front p = ±t of an emitted or absorbed

spherical wave of light, as conceived by Huygens. The point, the Newtonian picture, what

we observe when we speak of a photon hitting a photographic plate, is merely the

intersection of the wave-front with the standing dislocation line. The spherical wave

itself, as function of 9,t is harmonic in the metric (1) and satisfies the boundary

conditions ot section 2, when we replace it hy its constituent parts, which are products

VT in the separate variables. We therefore get first of all the first relation (4); it

-8-



expresses Planck's law (but with n + . in place of n). In this formula vip0  is the

quantum ot energy except for units; P is V(2A) where A is the cosmological constant,

and 0 is P log coth R, where R = ur0. Of course p0 here depends on the

particle whose field determines the metric (7), and whose algebras are the pair M,M'. The

superposition of out and in going waves from M,M' describes periodic ones with the above

Planck frequencies.

We shall need some constants for the particle. They can now be calculated. The

charge Q becomes an integral in 93 of 4 times a Dirac function (0 except for

r - rU). The value found is r
2
/I, or using familiar cgs units

Q = i±c2 r/ ,

where K is a coupling factor (from well-known equations KTij = Gij + Aq)ij and G

and c are known. Vie energy E is similarly an integral outside and inside r =r,

and we find that the mass

M= E/c
2  (I Kc

2
/(GP))V(R)

where

W2 4 I'35°(2 + )I- -(n+l)R

P(R) = 2R
2 

+ N + (log2)
2 

+ 4 1 (2 n + 1) - 2e

n 2.... 7 (2n+1) 2

However we also had, from symmetry, the second equation (4). Thus R depends on

n,s = 0,1,2,... by the equation

(8) s + I (2n + 1)1

log coth

Experimentally, log coth R/2 is found in quite a different way. For the electron, for

n = 0, the right hand side of (8) is found experimentally to be 3.02806. For the proton,

for n = 0,1,2,3 the experimental values are

1.143076, 3.429227, 5.715378, 8.00153

From this we should inter (taking account of experimental errors, admittedly large for the

electron, where the whole procedure is very indirect) that the true values of s are 2 for

4 -9-



the electron with n - 0, and 7 for the proton with n - 3. We are then able to get from

(8) theoretical values for log coth R/2, more reliable than the experimental ones. The

proton has moreover indeed what physicists refer to as a "-trange" oroperty: its most

stable excited state is not n = 1, but n - 3. Finally we get, for the radius of the

proton .4283 x Io-13cm, and for that of the electron 8.253 x IU1
3. 

For the electron,

this is the first reliable estimate, as we cannot bombard it with smaller particles.

A related question concerns the intrinsic magnetic m ment. The formula for this is

7gs " (ehl/2m) and can now be proved with the above theory. Here ±h/2 is the "spin".

1 *

The coefficient 2 gs has so far been an experimental one, with the values 1.0012 for the

electron, 2.7928 for the proton. However the theoretical coefficient is simply log coth

R/2, and its corresponding values are 1.047198 and 2.748936, assuming as before n = 0,

s . 2 for the electron, and n - 3, s - 7 for the proton. These are the values

(w/3,72/8) experiments should give for I gs, under corditions which do away with the

disturbing magnetic field of the earth (about ± .045).

We come to the neutrino: like the photon it is not here a particle at all. Instead

of a product, its algebra involves a sum. A typical function is e exp i(P - t) - (y + iz).

Thus the zeros are on the locus y - e cos(p - t), z - e sin(p - t), i.e. they lie on a

cylinder of radius C, on which the motion is a right or left handed screw. To detect a

neutrino at all, we need a long portion of its screw path.

Alonso-Finn [I, p. 135, p. 2891.

-10-



§6. Resonance states and gauge states. Now, in the metric (7), we look for harmonic

functions of the form U(P,t)W(y,z), where U,W are not harmonic in their metrics, but

subject to

AW = -kW, a 1U = kU

Circular symmetry in y,z leads to a separation of variables in polar coordinates there,

and W becomes the product of a Bessel function and a trigonometric one. With U we

proceed as in section 2, so that k a
2
a(I - a) and we have the further parameter A > 0

and the relations (5).

The solutions corresponding to A > 0 give rise to what we shall call resonance

I
states of our particle. They depend on the integer N = 1,2,3,.... We have CL = ± N

where yN = VN(N + 1) - 1/4; and we have a value AN  whose vicinity contains the

important part of the range of A, and therefore contributes a major part to the energy.

The approximate square root of A N is given by (6), and we can now get a good theoretical

estimate of the energy EN arising from our "resonance". This increases, as is easy to

see, the energy E of our particle to (E
2 

+ E2)
1 / 2

, so that it becomes

n + o(n' + 1 + ^~- N)E0 + E

where E6/E is .143 for the proton and 197.205 for the electron! (Quite a difference!)

n. is the energy level of the internal excited state of the particle. n' for the

electron is 0, for the proton it is 1 or 2. In the case of the proton, this resonance

state has been reached experimentally for n' = 2 and for a number of correspondinq N.

The resulting energies are given for instance in Frazer (21, but the figures soon become

unreliable as N increases. Moreover for N = 2 there is no experimental figure, and

for N = 1 the value of n' is I instead of 2. However all these figures are, under the

circumstances, in excellent agreement with our theoretical ones, even for instance for

N = 30, when the exlherimental energy is 3030 and the theoretical one 3026.

The same theoretical formula applies to the resonance staites of the electron, but as

pointed out with very different numerical oonstants. (Incidentally E' tor the electron

-11-



would have been about 206, if we had not made the theoretical correction, indicated in the

preceding section, to log coth R/2.) Besides, there is no known experimental way ot

inducing resonance states in the electron instead, in the "experimental" line belo", we

have noted the energies of the "particles" U±,lWtK+,K*+X.

Electron (with n - n' - 0, 8 = 2) N = 1, 5, 28, 52, 56

Theoretical resonance energies: 104, 138, 492, 891, 95H

"Experimental" 105, 139, 493, 891, 959

Can anyone doubt, after this, that these supposed particles, which decay ultimately into

the electron, are the electron's observed resonance states? What about other values of

N? Should we look for them, in our laboratories? In the stars? Are some of them unstable

when there is interaction with other particle?

We pass on to the case A - 0, a - N + 1. There is the further complication that

N 4 s - 1, however this last condition becomes irrelevant, because the crucial ratio

(n + 1)/(s +1) can be m d- to take the same value, 1/3 or 7/8, for pairs n,s in which
2

s is as large as we please. These ratios 1/3 for the electron, 7/8 for the proton, we

must stick to. They determine the radius and so forth, which does not chanqe.

Mathematically, as we saw, a harmonic two-dimensional state was first reduced to

s = U by s integrations, and then calibrated by specifying the additional polynomial of

degree 4 s - 1. We may speak of a similar calibration or yauge in the p,t variables,

arising from adding the appropriate Legendre polynomial in tanh X/2. Physically, one

thinks rather of a rotation or "twist", of order s, applied only to the inside (or to the

outside) of the spherical shell r = r0 . In Jackson [5, p. 2b9], such a twist is

attributed to a shift of a dislocation line. At any rate, as in the case of resonance, the

twist increases the energy of the oriqinal particle, by a factor which turns out to be

+ (E/E). N-(N + i) ,

where is as before. In e tables below, (n + )(s + ) is of course 7/8 for the

proton, 1/3 tor the electron.

-12-



A

Proton N 2, 4, b, 12

Theoretical gauge energies factor 1.154, 1.281, 1.407, 1.78b

Experimental 1.187, 1.274, 1.405, 1.783

Electron N - 32, 45, 4b, bO, 73

Theoreticdl g.e.f. 54b, 765, 781, 1017, 1235

Experimental 548, 769 ± 3, 783, 1019, 1253 j 2U

Here again, in the "experimental" rows, the figures are ratios, to the energy of our

particle, ot the erergies of supposed "particles": in the first list A,E-,-O, I- (for

+ 0 1
+ I0 the figures would be 1.2b5, 1.270); in the second list n, P and POI , C 

f"

Again, theretore, these "particles" are really states (gauge states) of the proton or the

electron or of their antiparticles.

-13-
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